Terminal Selectors of Neuronal Identity.
نویسنده
چکیده
The analysis of the developmental programs that define many different neuron types in the nematode Caenorhabditis elegans has revealed common themes in how distinct terminal differentiation programs are controlled. Rather than being controlled in a piece-meal manner, terminal identity features of a mature neuron are often coregulated by so-called terminal selector transcription factors. Here, I summarize the terminal selector concept and emphasize core features of this concept in the C. elegans system such as coregulation of terminal effector batteries, combinatorial control mechanisms, and the coupling of initiation and maintenance of neuronal identity.
منابع مشابه
Coordinated control of terminal differentiation and restriction of cellular plasticity
The acquisition of a specific cellular identity is usually paralleled by a restriction of cellular plasticity. Whether and how these two processes are coordinated is poorly understood. Transcription factors called terminal selectors activate identity-specific effector genes during neuronal differentiation to define the structural and functional properties of a neuron. To study restriction of pl...
متن کاملThe LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain tr...
متن کاملA map of terminal regulators of neuronal identity in Caenorhabditis elegans
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nem...
متن کاملDiversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression
A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal...
متن کاملRegulatory logic of neuronal diversity: terminal selector genes and selector motifs.
Individual neuronal cell types are defined by the expression of unique batteries of terminal differentiation genes. The elucidation of the cis-regulatory architecture of several distinct, single neuron type-specific gene batteries in Caenorhabditis elegans has revealed a strikingly simple cis-regulatory logic, in which small cis-regulatory motifs are activated in postmitotic neurons by autoregu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current topics in developmental biology
دوره 116 شماره
صفحات -
تاریخ انتشار 2016